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RANDOM FIELD SOLUTIONS INCLUDING BOUNDARY CONDITION UNCERTAINTY

FOR THE STEADY-STATE GENERALIZED BURGERS EQUATION

LUC HUYSE� AND ROBERT W. WALTERSy

Abstract. CFD results are subject to considerable uncertainty associated with the operating conditions. Even

when the operational uncertainty is omitted under very controlled circumstances during wind tunnel experiments,

substantial disagreement between experimental and CFD results persists. This discrepancy must be attributed to model

uncertainty. This report discusses the various sources of uncertainty. The need for advanced uncertainty modeling is

illustrated by means of a computationally inexpensive 1-D Burgers equation model. We specifically address the

uncertainty due to missing variables (inexact or incomplete differential equations). To this extent a random field

model is used for the viscosity and the fundamental differences between the solutions of the stochastic differential

equations and a simple random variable model is highlighted. The Burgers equation theoretically needs to be integrated

over an infinite domain. In a deterministic approach, the integration domain is cut off at some far field boundary.

This truncation effectively ignores all variability outside this far field boundary. We present a practical treatment for

the uncertainty on the boundary conditions. The results indicate that ignoring the boundary condition uncertainty

dramatically underestimates the variance of the velocityu(x) in the interior of the domain.

Key words. model uncertainty, random field, uncertain boundary conditions
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1. Introduction & Motivation. Both computational results and experimental measurements in aerodynamic

applications are subject to considerable uncertainty as illustrated by the scatter in the solutions submitted by various

researchers for a recent AIAA drag prediction workshop [1]. For these reasons, the current certification process relies

heavily on full-scale flight testing. Dramatic savings would be achieved if the need for expensive full-scale flight tests

could be reduced through improved reliability (or dependability) of CFD results.

The interest in uncertainty modeling within the CFD community has grown considerably in recent years. In a

deterministic approach, the performance of a design is typically assessed for a limited number of design or operating

conditions. Uncertainty associated with the operating conditions (variable payload, atmospheric conditions) and fluc-

tuations in the geometry and smoothness of the skin (manufacturing uncertainty) may have substantial impact on the

results. Techniques for propagating these uncertainties require additional computational effort but are well established,

an example application is described in [30]. Exact and approximate uncertainty assessment methods are applied to an

airfoil optimization problem in [17], where a dramatic improvement of the robustness of the design was achieved.

However, even if these outside sources of “operational” uncertainty are omitted under very controlled circum-

stances during wind tunnel experiments, substantial disagreement between experimental and CFD results persists [1].

Assuming that the CFD model and the experiment simulate the same thing, this discrepancy must be attributed to

model uncertainty. In this paper we will address the issue of modeling uncertainty for a computationally inexpensive

1-D Burgers equation model.
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2. Outline of Paper. After an initial discussion of the different sources of uncertainty and quantitative uncertainty

modeling techniques in Sections 3 and 4, the Burgers equation is introduced in Section 5. Results for a random

variable model of the viscosity are presented in Section 6. A random variable model of the viscosity assumes that

the viscosity remains constant throughout the entire domain. However, the temperature dependence of the viscosity

introduces additional uncertainty in the viscosity which is best captured using a random field model. This model

uncertainty effectively transforms the Burgers equation into a stochastic differential equation. Second-order random

field models are discussed in Sections 7. Two discretization techniques, midpoint and locally averaged discretizations,

are presented in Sections 8 and 9. Results for the random field model are given in Section 10. The boundary conditions

for the Burgers equation are specified at infinity. In numerical solution methods, the integration domain is limited and

cut off at the “far field” boundary. The additional uncertainty due to this boundary condition treatment is assessed in

Section 11. Final conclusions are drawn in Section 12.

3. Sources of Uncertainty.At this point in the discussion it is appropriate to spend some time on nomenclature,

especially the difference between “error”, “scatter” and “uncertainty”. Unfortunately, these terms have been used to

denote somewhat different things in different fields of application. Historically, the CFD community has sometimes

used the term “uncertainty” to denote “error” in relation to grid convergence studies [32]. This confounds the issue.

We adopt the following definitions, which are commonly used by statisticians:

� Error is a deterministic concept and is defined as the difference between the true or exact answer to a problem

and the answer, computed or measured using a faulty or simplified theory.

� Scatter measures the range or spread of the data, but gives no information about the potential bias due to

systematic measurement error or due to missing terms in the CFD code.

� Uncertainty indicates that the result can be only known with a limited amount of confidence for a given level

of precision. This uncertainty is an inherent property of the measurement technique or model description and

is due to lack of knowledge.

The distinction between the deterministic and stochastic nature is apparent in the AIAA definitions as well [2]:

� Error is a recognizable deficiency in any phase or activity of modeling and simulation that is not due to lack

of knowledge.

� Uncertainty is a potential deficiency in any phase or activity of modeling and simulation that is due to lack of

knowledge.

Since error is a recognizable deficiency, all errors are – in principle at least – correctable and therefore deterministic.

Since uncertainty is caused by a fundamental lack of knowledge, it cannot be eliminated. If a higher confidence level

(or level of credibility) of the prediction is required, the result can only be given with less precision. Uncertainty forces

a fundamental trade-off between confidence and precision.

Two sources of uncertainty can be distinguished [6],[28]: inherent (aleatoric) and model (or epistemic) uncer-

tainty.

� Inherent Uncertainty: this applies to phenomena which we accept to be intrinsically variable in our model. A

descriptive, often statistical, formulation is used for this uncertainty and no attempt is made to explain any of

this variability. In a mathematical model, these uncertainties are typically described using (joint) probability

density functions. Techniques for the efficient propagation of these distributions through a model will be

briefly discussed in this report.

� Model Uncertainty: three types can be distinguished here. The first two types can be caused by either “errors

of ignorance” or “errors of simplification”. Note that use of the word “error” means that these uncertainties

originate in either an acknowledged deliberate simplification or an acknowledged lack of understanding.

However, since the exact solution is unknown is this case, the errors can not be corrected and we have no
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alternative but to treat them in a non-deterministic manner as uncertainties.

1. missing variables: a typical example is the exclusion of coupling effects from the analysis. For instance

the viscosity depends on the temperature, but we may decide not to do a full coupled aero-thermal

analysis and ignore the effect of the temperature on the viscosity. Ignoring structural deformations of

the wing in an aerodynamic analysis is another example thereof.

2. inexact functional form: quite often we use linear equations whereas the original physics model contains

non-linear terms. The linearization introduces an acknowledged error, however, we may be (practically)

unable to solve the original non-linear equations.

3. parameter (or statistical) uncertainty: provided then parameters in the model exist and are unique,

their values can be determined fromn experiments if both the model and experimental data are exact.

However, in the presence of incomplete information (measurement error, model error), no amount of

data can provide exact solutions for them and the true values of these parameters will remain uncertain.

4. Quantitative Uncertainty Modeling. Uncertainty quantification can be accomplished using either probabilis-

tic or deterministic methods [28]. Examples of non-probabilistic, sometimes also referred to as possibilistic methods,

are interval analysis [15], Dempster-Shafer theory [36], convex modeling [5], and fuzzy computation methods [31].

Broadly speaking these methods address the possibility of an event within the bounds imposed on the uncertain pa-

rameters. They do, however, not give any information regarding the likelihood of this event taking place.

Probabilistic methods, on the other hand, provide ample quantitative information regarding the likelihood of an

event taking place. For varying degrees of computational effort, one can compute statistics, and the confidence inter-

vals thereof, or even complete probability density functions (PDF) for any particular quantity of interest. It is however,

important to realize that the model outcomes can be very sensitive to the accuracy of the provided probabilistic in-

put [11]. It is important to recognize that not just marginal PDFs are required but that an accurate estimation of the

correlation between random variables is paramount [41].

Most specialists agree that perhaps the most promising applications for the non-probabilistic methods will occur

when reliable data are unavailable or hard to get. Non-probabilistic methods are mostly used in absence of reliable

and accurate data. There is little or no debate that, when sufficient data exist, the probabilistic model is superior.

Probabilistic computations give much more comprehensive knowledge about the state of a particular system. The

debate between the believers in probabilistic and possibilistic methods will probably (or is it: possibly?) continue for

considerable time. In short, the end-user should never forget that no matter what model (probabilistic or possibilistic)

is used, the computed outcomes are conditional upon the model assumptions made [12]. Uncertainty associated with

the models should not be taken as an excuse for sloppiness! No matter what quantitative uncertainty analysis model is

used, the validity of the results depends on the validity of the model.

Recently, a mathematical framework which unifies the probabilistic and possibilistic algorithms has been sug-

gested [19]; it consists of a general constrained optimization problem:

minfs(x)jg(x) = 0g(4.1)

whereg(x) represents the limit state function,i.e. the zero safety margin, as a function of the uncertain parametersx

ands(x) is some function which characterizes the method. For instance, whens(x) is set equal to the reliability index

�, the solution to Eq. (4.1) reverts to the well-known first-order reliability method (FORM) [24].

In this paper, only probabilistic analysis methods are used. Based on the previous discussion of uncertainty types,

the following 3 issues need to be addressed in any quantitative uncertainty assessment:

1. characterize uncertainty associated with the system parameters and outside environment

2. propagate these uncertainties through the (potentially large) system
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3. incorporate the model uncertainty -lack of data or lack of knowledge about the system behavior- into the

overall assessment

4.1. Characterizing aleatory uncertainty. A complete statistical description requires the identification of all

marginal and joint probability density functions of each random variable in the problem [13]. In practice, the required

amount of data simply will not be available or the data structure will be so complex that only an approximate descrip-

tion is mathematically tractable. One form of approximate modeling is the use of conditional distributions, where the

less important random variables are modeled conditional upon the values of the more important random variables.

Whether a particular random variable is important depends on both its own variability and on the sensitivity derivative.

Alternatively a second-order description can be used, which consists of the marginal PDF for each of the variables

and the correlation coefficients between them. The correlations can be hard to estimate accurately but the importance

thereof can not be understated and is clearly illustrated, for instance, by the expression for the first-order estimate of

the variance ofz = f(x; y)

Var(z) = Var(x)

�
@f

@x

�2

+Var(y)

�
@f

@y

�2

+2Covar(x; y)

�
@f

@x

��
@f

@y

�
(4.2)

where all derivatives are evaluated at the mean values IE(x) and IE(y) and where

Covar(x; y) = �xy
p

Var(x)Var(y) = IE [xy � IE(x)IE(y)](4.3)

is the covariance ofx andy and�xy is the correlation coefficient ofx andy.

In the absence of a sufficient amount of data, expert opinion can be used to construct an approximate joint PDF. An

overview of expert elicitation techniques is described in [26] and [14]. It should be stressed however, that significant

statistical uncertainty is associated with such techniques (discussed in Section 4.3).

4.2. Propagating uncertainties.Consider the vectorx = (x1; : : : ; xn) and its joint PDFfX(x1; : : : ; xn). The

relationship between the input variablesx and the output variablesy = (y1; : : : ; yn) is defined by

yi = gi(x1; : : : ; xn) for i = 1; : : : ; n(4.4)

together with the inverse functions

xi = g�1i (y1; : : : ; yn) for i = 1; : : : ; n(4.5)

The JacobianJ of the transformation is:

J =

����������

@y1
@x1

@y1
@x2

� � � @y1
@xn

@y2
@x1

@y2
@x2

� � � @y2
@xn

...
...

...
@yn
@x1

@yn
@x2

� � � @yn
@xn

����������
(4.6)

The exact joint PDF for the model outputy = g(x) in terms of they-variables is given by [16]:

fY (y1; : : : ; yn) = jJ j
�1

fX(x1; : : : ; xn)

= jJ j
�1

fX(g
�1
1 (y1; : : : ; yn); : : : ; g

�1
n (y1; : : : ; yn))

(4.7)

wheref�(�) is the PDF of the variable�.

Various techniques of uncertainty propagation are briefly outlined in this section. Three levels of methods can be

identified:
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1. Simulation methods: In their most elementary form (brute force Monte Carlo) one samples repeatedly from

the joint PDF for the uncertain variables and generates the histograms of the model response quantities of

interest [25]. The method has the advantage that it is simple and universally applicable. The convergence does

not directly depend on the number of random variables in the problem. In this form Monte Carlo methods

always give the correct answer, but a prohibitively large number of simulations may be required to accurately

estimate extreme responses, which have a small probability of occurrence. Quite often these are the ones

of interest in structural engineering and for this reason alternative sampling techniques which lead to much

faster convergence have been developed. An overview of such variance-reduction techniques is available in

[13], [25] and [34]. Such techniques should be used carefully since importance sampling, e.g., can introduce

severe bias if used inappropriately.

However, the brute force Monte Carlo method requires a much smaller number of samples – typically around

100 or less – to accurately estimate the mean and standard deviation, which are the quantities of interest in

computational fluid dynamics applications. Brute force Monte Carlo also sounds appealing since its imple-

mentation can be written as a wrapper around an existing, deterministic algorithm. This makes it easy to

transform any deterministic algorithm into a probabilistic code. However, this approach is not very efficient,

particularly when the deterministic code uses an iterative solution process. The combination of a limited

amount of extra coding to make use of restarts and a smart sampling scheme may result in large pay-offs in

execution time.

2. Second-moment analytic approximations: these methods are based on a Taylor series expansion around the

mean value of the input variables. They work best when the input uncertainties are not too large (coefficient

of variation less than 10 to15%) and approximately Gaussian. The methods require accurate derivative

information. They have proven highly accurate in structural mechanics applications [4].

3. Advanced analytic methods: These methods can be regarded as a generalized Monte Carlo method [34].

However, since the solution mechanics are so different, we treat them as a separate category. In such a

method the stochastic output variables are written as a series expansion. This series expansion formulation

readily accommodates advanced random field modeling of the uncertainties. The basic equations (ODE or

PDE) are now solved stochastically and a large amount of coding is required. The trade-off is that an accurate

solution can be obtained for moments or output PDFs which accounts for both the non-linearities in the

differential equations and the non-Gaussian nature of some of the input variables. Polynomial Chaos [39] is

one member of this class of methods.

4.3. Model uncertainty. Model uncertainty can be attributed to either lack of data or their inaccuracy, or an

inexact mathematical model form. This inexact form can be due to either simplification or ignorance [6]. Model

parameters cannot be estimated accurately when insufficient high-quality data are available. This uncertainty on

the parameters can be reduced by collecting more data. Due to the asymptotic normality of the maximum likelihood

estimator, a second-order description or confidence bounds of the statistical uncertainty is readily obtained by inverting

the local Fisher information matrix [18].

Model inexactness can be introduced when a complex model is simplified and some of the variables are omitted

from the analysis. Sometimes a nonlinear model is linearized or replaced by a response-surface model to save computer

time. Uncertainties due to ignorance are by definition notoriously hard to quantify. They can only be described in

probabilistic terms [12]. In this paper we will consider uncertainty due to missing variables and boundary conditions.

In comparison with Eq.(4.7), model uncertainty adds an extra layer of uncertainty to the problem, but does not

fundamentally alter the structure of the problem. Let� andM denote the model parameter and model form uncertainty,

respectively. When the model uncertainties� andM are not taken into consideration, the results obtained using
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inherent variabilityx only can be considered conditional upon both the values used for the model parameters and the

mathematical form used for the actual model itself:yj�;M = g(xj�;M). The complete PDF model for the output

y = g(x; �;M) is:

fY;�;M (y; �;M) = fY j�;M (yj�;M) f�;M (�;M)

= fY j�;M (yj�;M) f�jM (�jM) fM (M)
(4.8)

If the model uncertainties are independent of the inherent uncertainties the complete PDF model for the outputy =

g(x; �;M) becomes separable and simplifies to:

fY;�;M(y; �;M) = fY (y)f�(�)fM (M)(4.9)

5. Burgers’s Equation. In this paper we consider a non-linear 1-D model problem, which includes both ad-

vection and diffusion. The viscosity is the only model parameter in this problem. The complete nonlinear Burgers

equation

@u

@t
+ u

@u

@x
=

@

@x

�
�
@u

@x

�
(5.1)

is a parabolic PDE which can serve as a model equation for the boundary-layer equations and is very similar to the

equations governing fluid flow [3]. For simplicity the linearized equation

@u

@t
+ c

@u

@x
=

@

@x

�
�
@u

@x

�
(5.2)

is often used. Equations (5.1) and (5.2) can be combined into a generalized equation (GBE)

@u

@t
+ (c+ bu)

@u

@x
= �

@2u

@x2
(5.3)

For constant viscosity�, c = 1
2 andb = � 1

2 , the GBE (5.3) has the stationary solution

u(x) = 1
2

h
1+ tanh

�
x
4�

�i
(5.4)

We solved the GBE as a steady-state boundary value problem with a second-order accurate central difference scheme

using a conservative formulation for Eq.(5.3). The non-linear equation:

@f

@x
=

@

@x

�
�
@u

@x

�
(5.5)

where the fluxf = u
2 (1� u), is solved iteratively. We drive the residualr(u) to zero:

r(u) =
@f

@x
�

@

@x

�
�
@u

@x

�
= 0(5.6)

We implemented Newton’s method on a uniform grid:�
@r
@u

�(n)
�u(n) = �r(u(n))

u(n+1) = u(n)+�u(n)
(5.7)

Using a second-order central difference scheme this leads to a tri-diagonal system of equations in each iteration:2
66666664

b1 c1

a2 b2 c2 0

...

0 an�1 bn�1 cn�1
an bn

3
77777775

8>>>>>>><
>>>>>>>:

�u1

�u2
...

�un�1
�un

9>>>>>>>=
>>>>>>>;

= �

8>>>>>>><
>>>>>>>:

r(u1)

r(u2)
...

r(un�1)

r(un)

9>>>>>>>=
>>>>>>>;

(5.8)
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where 8>><
>>:

aj =
@rj

@uj�1
= �

(1=2�uj�1)
2�x �

�j
�x2

bj =
@rj
@uj

=
�j+�j+1

�x2

cj =
@rj

@uj+1
=

(1=2�uj+1)
2�x �

�j+1
�x2

(5.9)

andb1 = bn = 1 anda1 = c1 = an = cn = r(u1) = r(un) = 0.
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FIG. 6.1.Comparison of exact and approximate analytical solutions to first and second moment ofu(x) using 129 grid points.

6. Random Variable Modeling of the GBE. The differential equation Eq.(5.3) is solved for an assumed value

of the viscosity�, which does not depend on the independent variablex, i.e.� is constant over the entire domain. The

exact PDF ofu(x) can be obtained from the following equation [16]:

fU (u(x)) =

���� @@�u(x;�)
����
�1

fM (�)(6.1)

from which the exact mean IE[u(x)] and variance Var[u(x)] = IE[u2(x)]� IE[u(x)]2 are readily computed using Math-

ematica [42]. These results are shown in Figure 6.1 for an assumed a Gaussian distribution for� with mean value
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IE(�) = � = 0:25 and COV of10%.

On the basis of the closed-form analytic solution in Eq.(5.4), we can compute analytic expressions for the first

and second derivatives. We can readily compare first and second-order approximations with exact results. The first

and second order approximation to the expected value IE[u(x)] are given by:

IEFO [u(x)] = u(�;x)

IESO [u(x)] = u(�;x) + 1
2Var(�) @2u(x)

@�2

���
�

(6.2)

The first-order approximation is identical to the deterministic solution. The mean stochastic and second-order

approximation thereof are shown on Figure 6.1a. The graphs almost coincide but the differences IE[u(x)]� IEFO[u(x)]

and IE[u(x)]� IESO[u(x)] are plotted along the Y-axis on the right side of Figure 6.1a. Since the error between the

deterministic (a.k.a. first-order) and mean stochastic solution has a shape, which is very similar to the second-derivative

(plotted in Figure 6.1b), it is to be expected that the second-order correction will lead to a much more accurate result.

The error on the second-order first-moment (SOFM) estimate is 2 orders of magnitude smaller than the error on the

first-order first-moment (FOFM) estimate. It is worth noting that it follows from Eq. (6.2) that, due to the symmetric

nature of the Gaussian PDF, the derivatives of odd-order have no impact on the estimate for IE[u(x)].

The first order approximation to the variance ofu(x) is:

VarFO [u(x)] =

�
@u(x)
@�

���
�

�2

Var(�)(6.3)

When� is a Gaussian random variable, the second order approximation to the variance ofu is:

VarSO[u(x)] =

�
@u(x)
@�

���
�

�2

Var(�) + 1
2

�
@2u(x)
@�2

���
�

Var(�)

�2

(6.4)

Both the exact variance Var[u(x)] and the FO (6.3) and SO (6.4) approximations are even functions ofx. Figure

6.1d compares the accuracy of the first-order and second-order solutions. It can be concluded that the second-order

estimate, which is always greater than the first-order estimate for a Gaussian random variable, is generally speaking

more accurate. Figure 6.2 shows the true PDF ofu(x) for selected values ofx. The PDF shapes foru(x0) andu(�x0)

are identical, but mirrored. Both the FOSM and SOSM estimate assume that the underlying distribution is symmetric.

Consequently, the largest errors occur near the ends of thex-interval, i.e. where the PDF foru(x) is strongly skewed.

Since the PDF atx = �1 is nearly Gaussian, the SOSM estimate is highly accurate. It is also important to note that

a correct value Var[u(0)] � 0 is predicted by all methods. The skewness and kurtosis are shown in Figure 6.3. The

kurtosis value� = 0 atx = 0 is caused by the degenerate PDF foru(0).

7. Gaussian Random Fields.

7.1. Second-Order Description.A continuous (or discrete) random field can be regarded as an infinite (or

finite) set of random variables defined over its domainX . One-dimensional random fieldsZ(x) are also referred to

as random processes. For all practical purposes, continuous random fields must be discretized for use in numerical

algorithms, and we can concentrate on discrete random field characteristics only. Just like any othern-dimensional

probability density, a random field is fully characterized either by its joint density or by its marginals and all its higher-

order conditional PDFs, i.e of order2;3; : : : ; n� 1 [16]. In second-order analysis, a random field is described by the

marginals and the auto-correlation functionR(x;x0), which is usually defined as the correlation between the random

variablesZ(x) andZ(x0) at two locationsx andx0 [40]:

R(x;x0) =
Covar[Z(x);Z(x0)]p
Var[Z(x)] �Var[Z(x0)]

(7.1)
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For a homogeneous random field, the marginal distribution is independent of the location and the auto-correlation

functionR depends on only the distance or lag� = x� x0 between the two locations [29]. A homogeneous, Gaussian

process is completely determined by its mean value IE[Z(x)], variance Var[Z(x)] and auto-correlationR(�).

TABLE 7.1

Commonly used families of auto-correlation models and corresponding spectral density functions [29].

Correlation model Auto-correlationR(�) Spectral densityS(!)

exponential exp(�j�j=lc)
lc

�[1+(!lc)2]

squared exponential exp
h
� (�=lc)

2
i

lc
2
p
�
exp

h
�
�
!lc
2

�2i
triangular

(
1� j�j

lc
if j�j � lc

0 if j�j > lc

1�cos(!lc)
�!2lc

damped sinusoidal sin(�j�j=lc)
�j�j=lc

(
lc
2� if j!j � �

lc

0 if j!j > �
lc

9



x

sk
ew

ne
ss

of
u(

x)

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

x

ku
rto

si
s

of
u(

x)

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure a: compare with
1 = 0 for Gaussian PDF Figure b: compare with� = 3 for Gaussian PDF
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Some commonly used models for the auto-correlation function are listed in Table 7.1 and shown in Figure 8.2a.

The first two are perhaps most commonly encountered in the literature [21]. The first one applies to a non-differentiable

field, whereas the second one is found in differentiable fields. The correlation lengthlc is a very important measure for

the rate of fluctuation within the random field model. A larger correlation lengthlc corresponds to a slower varying

random field as is illustrated in Figure 7.1 for the exponential correlation model.
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7.2. Discretization of Random Fields.Most modern numerical solution algorithms to PDE’s (such as finite

element, finite volume or finite difference) require that all continuous parameter fields are discretized. When spatial

or temporal uncertainty effects are directly included in the analysis it makes sense to use random fields for a more

accurate representation of the variations. For instance, a thickness of the wing-skin is random but is also not likely to

be exactly the same everywhere. The spatial or temporal fluctuations of a parameter cannot be accounted for if that

parameter is modeled by only a single random variable.

We only give a brief overview of some of the discretization methods, a more extensive review is available in the

literature [34]. Some of these methods are limited to Gaussian fields only. We will discuss:
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1. midpoint method

2. locally averaged method

3. shape function method

4. series expansion method

Other methods include locally averaged subdivision [10] and the turning-bands method [9].

The simplest method of discretization is the midpoint method [7]. In this method the field within the one element

or cell is described by a single random variable, which represents the field value at the centroid of the element. The

value of the field is assumed to be constant within the entire cell. Consequently, the discretized field is step-wise

constant with discontinuities at the cell boundaries. Its statistics (mean, variance,: : :) are readily computed from the

statistics at the centroids.

In the locally averaged method, the field within each cell is described in terms of the spatial average of the field

over the element [40]. The discretized field is still constant over each cell with step-wise discontinuities at the cell

boundaries, but one can expect a better fit due to the averaging process. Typically, the variance of the averaged random

process is smaller than the local variance of the random field, used for midpoint discretization. Expressions for the

statistics will be derived in Section 9.

The shape function method [23] describes the random field using shape functions anchored at a set of nodal values.

The method is particularly elegant and efficient in conjunction with the finite element method [22]. The random field

description is continuous across cell boundaries and this represents a clear improvement over the midpoint and locally

averaged discretization methods.

Yet another method uses a series expansion approach to discretize the random field. Legendre basis functions are

used with Gaussian random fields in [20]. Other functions can be used in conjunction with different marginal PDFs

[43]. Provided that the exact eigenfunctions in the Karhunen-Lo`eve expansion are available, this method requires the

smallest number of random variables for a given level of accuracy [39]. However, often there is no exact solution to the

integral eigenvalue problem associated with the Karhunen-Lo`eve expansion. In this case, the resulting approximations

essentially reduce the series expansion method to a shape function method [21].

In this report, we compare results using the midpoint and locally averaged random field discretization methods

for Monte Carlo simulations. Polynomial chaos results will be reported in an upcoming report [41].

8. Generation of Midpoint Random Field Samples.Generally speaking, three families of methods can be used

to generate sample random fields. The different methods will be applied only in conjunction with the auto-correlation

functions given in Table 7.1, but are – in most cases – applicable to other auto-correlation functions as well. The

random field can be discretized over the grid, which is used to solve the differential equation, or over any other grid.

Typically, the random field grid is a subset of the finite element/difference/volume grid but this – strictly speaking –

need not be the case. Only Gaussian random fields are included in this discussion.

8.1. Auto-regressive processes.Processes with an exponentially decaying auto-correlation function can easily

be transformed into first-order auto-regressive, or AR(1) processes, which are also known as Markov processes. In

such processes the auto-correlation decreases steadily with increasing distance between sample points. For a uniform

grid the discrete AR(1) processZ(x) is defined by:

Z(xi) = �Z(xi�1) + ai(8.1)
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wherej�j < 1 and allai are independent, identically distributed zero-mean Gaussian variables. The discrete process

has the following second-order characteristics [35]:

IE[Z(x)] = 0

Var[Z(x)] = Var[a]
1��2

RZ(xi; xi�k) = �jkj
(8.2)

If we chose the parameters

� = exp(�1=lc)

Var[ai] = 1� exp(�2=lc)
(8.3)

it readily follows that the fieldZ(x) has an exponential correlation functionRZ(xi; xi�k) = RZ(�) = exp(�j�j=lc),

where� = xi � xi�k.
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FIG. 8.1.Theoretical and sample auto-correlation functions for exponential correlation model withlc = 1.

TABLE 8.1

Mean Relative (in percent) and Absolute Squared Error on the sample statistics for the exponential correlation model withlc = 1. Marginal

density for the viscosity is Gaussian with mean value 0.25 and COV= 10%.

Relative error (in%) on Absolute error (L2 norm) on

nsamples Mean St. Dev. Correl. Mean St. Dev. Correl.

100 0.14 0.61 1.13 0.00035 0.00015 0.00503

1000 0.02 0.24 1.43 0.00006 0.00006 0.00605

10000 0.01 0.07 0.06 0.00002 0.00002 0.00029

For uniform grids, the sample auto-regressive processes are easily generated using this method. The convergence

of the sample statistics to the true values of the random field is shown in Figure 8.1 and Table 8.1. From a practical

point of view, the stability and accuracy of the ensemble statistics is very important for the simulation process. A more

general description of auto-regressive processes can be found in [33] and [27].
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8.2. Covariance decomposition.In this method, the covariance matrix of the discretized field is generated first.

For a zero-mean, homogeneous processZ(x) the symmetric, positive definite covariance matrix is directly derived

from the auto-correlation function:

Covar[Z(xi);Z(xj)] = R(�)Var(Z)(8.4)

where� = jxi � xj j is the distance between the pointsxi andxj .

Along with the mean value IE[Z(x)] = Z, the covariance matrix fully describes the discretized Gaussian random

field. Using the covariance decomposition method the sample valuesZj(xi) of Z(xi), i = 1 : : :n can be generated on

the basis ofn independent random normal variablesyi:

fZ(xi)g =
�
Z
	
+ [A]T :fyig(8.5)

where the matrix[A] contains the eigenvectors of the covariance matrix. The variance of each of the independent

Gaussian variablesyi is equal to�i, theith eigenvalue of the covariance matrix. In this method the sample mean and

covariances will only approximately match the required values and approach the true values as the number of samples

increases.

It is possible to ensure that each ensemble matches the prescribed means and covariances, even with a small

number of samples. This preconditioning method [44] combines the modal decomposition of the covariance matrix

with the spectral representation of the random field, which is described in the next section. However, in this method

the variatesyi orZ(xi) are not directly generated from a Gaussian distribution; they are only approximately Gaussian

by means of the central limit theorem. They are generated as a sum of independent and identically distributed random

variables, which approaches a Gaussian random variable if sufficient terms are included in the sum.

The covariance decomposition method readily identifies the most important random variables as the ones with

the largest eigenvalues. This is useful if one wants to reduce the number of random variables in the random field

description.

8.3. Spectral representation.Unlike the previous methods, the representation of a random field using the spec-

tral method is continuous across the elements. The underlying idea is that a continuous random function can be

expanded on a basis of deterministic functions with random coefficients. The goal is to achieve a sufficiently accurate

representation of the random field with a finite, i.e. discrete, number of functions and coefficients.

The spectral densityS(!) (or power spectrum) of a stationary processZ(x) is given by the Fourier transform of

its auto-correlationR(�):

S(!) =
1

2�

Z 1

�1
R(�) exp(�j!�)d�(8.6)

SinceR(�) is an even function for a real-valued processZ(x), it follows that theS(!) is a real function of!:

S(!) =
1

�

Z 1

0

R(�) cos(!�)d�(8.7)

The random field discretization is achieved through the discretization of the spectral density. The power spectrum

is approximated at some pre-selected discrete frequencies, typically chosen equally spaced in[�!max; !max].

Zj(x) = Z +

NfreqX
i=0

p
2Var[Z(x)]S(!i)�! cos(!0ix+ �i)(8.8)

where�! is the spacing between the sampling frequencies,!0i is a small perturbation of!i and�i is the phase angle

[37].
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The process generated according to Eq.(8.8) is asymptotically Gaussian asNfreq !1. Since the highest fre-

quencies are ignored in the discretization of the random field, part of the variance of the process will be missed.

Another source of discretization error stems from the finite number of terms used in the representation. The conver-

gence to the target auto-correlationR(�) or to the target spectral densityS(!) is inversely proportional toN2
freq [38].

Additional details of this method are described in [37].

If the eigenvalues and eigenfunctions of the covariance matrix Eq.(8.4) are known, the Karhunen-Lo`eve expan-

sion requires the smallest number of functions to achieve a prescribed level of accuracy. However, in many cases

the eigenfunctions are only approximately known and the approximate K-L expansion is no more efficient than the

shape function expansion [22]. Other expansions may require more terms to achieve the same accuracy but require

substantially less computational effort. A detailed discussion of the truncation error in each of the methods can be

found in [21] and [45].

The slow fluctuations are represented using the lowest frequencies, whereas the high frequencies are required to

accurately model the rapid fluctuations. It automatically follows that much higher frequencies are required in Eq.(8.8)

to accurately model the sample random field in Figure 7.1a than for the one in Figure 7.1c. Figure 8.2 illustrates the

relationship between the auto-correlation model and the frequency range which is required.

9. Locally Averaged Random Fields.For the 1-D problem considered here we get the following statistics for

the locally averaged random field:

ZX(x) =
1

X

Z x+X=2

x�X=2
Z(s)ds(9.1)

whereX is the cell length andx is the midpoint of the cell. Since the field is homogeneous,

IE(ZX(x)) = IE(Z(x)) = Z(9.2)

The averaging process typically reduces the variance [40]. The variance function
(X) measures the reduction of the

point variance Var[Z] due to the averaging process. For a homogeneous random field::

Var[ZX ] � �2X = 
(X)Var[Z](9.3)
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and, for a homogeneous field, the variance function solely depends on the cell sizeX :


(X) =
2

X

Z X

0

�
1�

�

X

�
R(�)d�(9.4)

X’X

x

Zj(x)

FIG. 9.1.Definition of intervals and distances used in Eq.(9.7).

The scale of fluctuation� is defined as follows:

� = lim
X!1

X
(X)(9.5)

which indicates that, asymptotically for large averaging lengthX : 
(X) � �=X . Combination of Eqs.(9.5) and (9.4)

implies that

� = 2

Z 1

0

R(�)d� =

Z 1

�1
R(j�j)d�(9.6)

It follows immediately from the spectral density definition in Eq. (8.6) that the scale of fluctuation is proportional to

the ordinateS(! = 0) of the spectral density function� = 2�S(0).

The scale of fluctuation provides a lot of information over the extent of the correlation within the random field. If

the correlation dies out rapidly, the asymptotic relationship will be achieved for a relatively small averaging lengthX .

If two locally averaged field values are more than distance� apart, Eq.(9.5) indicates that they are almost independent

of each other.

On the basis of Eq. (9.4), the second-moment properties of the locally averaged random field can be computed.

These can then be used to generate sample random fields using the covariance decomposition method. The correlation

coefficient�ZX ;ZX0
between the locally averaged random field valuesZX andZX0 is given by:

�ZX ;ZX0
=

�(x�X) +�(x+X)� 2�(x)

2�(X)
(9.7)

where�(�) = (�)2
(�) and the distancesx andX =X 0 are defined in Figure 9.1.

10. Random Field Modeling of the GBE. In reality, the viscosity also depends – among other factors – on the

temperature, for which no information is available in the Burgers model (5.3). The model uncertainty caused by these

missing variables is best described using a random field, which can be thought of as an infinite set of random variables,
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each one of them describing the variability of the viscosity at a particular locationx. The second-order description of

a homogeneous random field [29] is given by the marginal PDFf(�) and the auto-correlation functionR(�) which

are both independent of the locationx for a homogeneous random field:

R(�) =
Covar[�(x); �(x+ �)]

Var[�(x)]
(10.1)

where� = x2 � x1 is the lag or distance between the two locations considered [40]. It is assumed that the marginal

densityf(�) is Gaussian with mean value� = 0:25 and a COV of10%.

The impact of the uncertain boundary conditions on the solution is discussed in the next section. This uncertainty

is ignored in this section: we directly applied the Dirichlet boundary conditions, obtained from the deterministic

steady-state solution Eq.(5.4):

u(�xmax) =
1
2

h
1+ tanh

�
�xmax
4IE(�)

�i
(10.2)
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FIG. 10.1.Difference between deterministic, mean random variable and mean random field solution (exponential auto-correlation withlc = 1).

The results in Section 6 using a random variable model reveal that the difference between the deterministic and

the mean stochastic solution is small from a practical point of view. This is still the case for the random field model as

well. Figure 10.1 indicates, however, that the difference between the deterministic and the mean random field solution

is somewhat smaller than the difference between the mean random variable and the mean random field solution. To a

large extent, this can be attributed to the formulation of the boundary conditions using Eq.(10.2); which are identical

for the deterministic and random field solution. Note that the mean random variable solution is an exact result, whereas

the mean random field solution is the results of106 Monte Carlo simulations. The standard error on the Monte Carlo

results is less than 0.00006.

For this reason we will not study the impact of the correlation lengthlc and auto-correlation modelR(�) on the

mean solution. The discussion is limited to the effects of the random field modeling on the standard deviation only.

It immediately follows from Figure 7.1 that the random field and random variable models lead to identical solutions

(shown in Figure 6.1c) for an infinite correlation lengthlc =1.

10.1. Comparison of midpoint and locally averaged solutions.When the viscosity�(x) is represented by a

random field, the numerical solution of the GBE in Eq.(5.3) requires a discretization at two different levels:

1. discretization required to solve the differential equation and compute an accurate solution for the velocity

field u(x).
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FIG. 10.2.Cell size dependence of the variance using the midpoint discretization method.

2. discretization required to model the fluctuations within the random field�(x) and ensure that the resulting

discretized equations are an accurate representation of the stochastic differential equation.

A more detailed error analysis of the second-order central difference scheme used in the analysis is documented

elsewhere [41]. In this paper, the focus is on the discussion of the required discretization level of the random field

itself. All the results in this Section apply to the exponential correlation model, but the same conclusions can be drawn

for other correlation models.

In this section we compare Monte Carlo results obtained using either the midpoint or the locally averaged dis-

cretization method. The sample random fields for the midpoint method are generated using the auto-regressive property

of the exponential correlation model Eq.(8.1). The sample random fields for the locally averaged method are obtained

using covariance decomposition Eq.(8.5).

It is intuitively clear [7] that the midpoint discretization method tends to overestimate the variability of the output

quantities of interest if the discretization is too coarse. This can be explained as follows. When the cell size is much

larger than the correlation lengthlc or the scale of fluctuation�, the viscosity fluctuates rapidly with the cell (like in

Figure 7.1a). Consequently, the midpoint values of the different cells will be practically independent of each other. As

a result thereof, Var[u(x)] will decrease if the number of cells increases. For uncorrelated midpoint values Var[u(x)]

will be inversely proportional to the number of cells. For a non-zero correlation lengthlc, the fluctuations virtually

disappear when the cell size is smaller than the correlation lengthlc (like in Figure 7.1c). In this case the midpoint

values of neighboring cells become highly correlated. Dividing the cells even further leads to basically identical

midpoint values for�(x) in the newly created cells and Var[u(x)] stabilizes.

Figure 10.2 illustrates this effect for various correlation lengthslc and an exponential correlation model for two

locations:

� x = �0:75: this is near the location where the random variable model (Figure 6.1c) has its largest variance.

� x = 0: this is the location where the random variable model (Figure 6.1c) has zero variance.

When� is modeled as a random variable, the Burgers equation is solved once for an assumed value of the viscosity

�. The mathematical expression of the closed form solution foru(x), given in Eq.(5.4), is independent of the actual

value of�. When the viscosity is modeled as a random field, however, the ODE in Eq.(5.3) becomes a stochastic

differential equation. It is immediately clear from Figure 10.2b that the solution of the stochastic differential equation
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has entirely different properties than Eq.(5.4). The random variable solution of Eq.(5.4) results in Var[u(0)] � 0.

Figure 10.2b indicates that this result is recovered in the limit forlc =1, but that this is generally not the case for a

finite correlation length.

Figure 10.2 shows that the standard deviations stabilizes once the cell size is roughly equal to the scale of fluc-

tuation�. Recall that� = 2lc for the exponential auto-correlation model. It is interesting to note that the white noise

random field model (lc = 0) converges to a deterministic response, i.e. Var[u(x)] � 0.
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FIG. 10.3.Comparison of cell size dependence of the variance using the midpoint and the locally averaged discretization method.

On the other hand, locally averaged discretization causes the true variance to be underestimated [40]. When the

cell size is much larger thanlc (as in Figure 7.1a) the local averaging process drastically reduces the variance as

explained in Section 9 (variance function
 close to 0). Consequently, the variance of the discretized viscosity field

in Eq.(5.3) will be underestimated. When the cell size is much smaller thanlc (as in Figure 7.1a) the local averaging

process leaves the variance virtually intact (variance function
 close to 1) and the full variance of the process is

included in the discretized random field. Figure 10.3 indicates that a stable solution for the variance is obtained if the

cell size is smaller than the correlation lengthlc and is approached from below as the cell size decreases. Figure 10.3

also shows that the midpoint and locally averaged results will tend to bracket the true variability of the output quantity

of interest.

Figure 10.4 summarizes the impact of the correlation lengthlc on Var[u(x)]. It follows from the figure that for

practical purposes it suffices to only know the order of magnitude oflc. For lc !1, the random field is represented

by a single random variable and we obtain the same solution as in Figure 6.1c.

10.2. Effect of auto-correlation function or spectral density. In this section, the effect of the auto-correlation

model on the standard deviation is assessed. All Monte Carlo solutions are computed using midpoint discretizations

of the viscosity field. The grids are fine enough to obtain converged values for the statistics. All random field sam-

ples are generated using the spectral representation method. The power spectral densities were truncated at!max,

corresponding to the95%-level:

2

Z !max

0

S(!)d! = 0:95(10.3)

For all computations the frequency range[�!max; !max] is discretized using 100 evenly spaced frequencies; the

truncation frequency for each model is listed in Table 10.1. The standard deviations computed for two different

assumed correlation lengthslc = 0:1 andlc = 10 using all 4 auto-correlation models are shown in Figure 10.5.
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FIG. 10.5. StDev[u(x)] obtained using 1000 midpoint Monte Carlo simulations of the random field and 512 grid cells.

As suggested by Figure 10.4 for the exponential auto-correlation model, Figure 10.5 shows that for all correlation

kernels used the variability is generally larger forlc = 10 than forlc = 0:1. For the shorter correlation lengthlc = 0:1

the triangular and damped sinusoidal correlation model lead to nearly identical variability inu(x) (Figure 10.5a).

Figure 10.5b shows that this is by no means a universal trend, but depends on the correlation lengthlc. It can be

TABLE 10.1

Truncation frequency!max used for computation of results in Figure 10.5.

Correlation model !maxlc

exponential 12.7

squared exponential 3.92

triangular 13.0

damped sinusoidal 2.98
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concluded that forlc = 0:1, the fluctuations in the viscosity field are too rapid for the weaker medium-to-long-range

correlations, caused by oscillating behavior of the correlation function (see Figure 8.2a), to have an effect. The

weak correlations between points separated by a distance larger thanlc are drowning within the rapidly fluctuating

field. When the viscosity field is varying more slowly, these correlations are strong enough to have an impact on the

solution. Note that the slight asymmetry in Figure 10.5b (most pronounced for the squared exponential model) is

entirely statistical in nature. Only 1000 Monte Carlo simulations were used to compute the results; the asymmetry

disappears when more simulations are performed.

11. Uncertain Boundary Conditions. In the previous section, deterministic Dirichlet boundary conditions were

imposed. In many CFD applications the differential equations have to be integrated over a (semi)-infinite domain.

In practice, the integration domain is cut off at some “far field” boundary and deterministic boundary conditions are

imposed. This approach essentially ignores all variability outside the truncated integration domain. In this section,

the impact of the uncertainty modeling of the boundary conditions on the second-order statistics of the solution in the

interior of the integration domain is analyzed.

In many practical cases, an exact, statistical treatment of the effects of the truncation of the integration domain

will be impossible. Also, the data required to build the sophisticated statistical model for such an analysis may be

unavailable. Therefore, we focus on a more practical second-order treatment of these uncertainties.

In particular we will compare the following 4 models:

(a) apply deterministic boundary conditions obtained from the steady state solution

(b) apply stochastic boundary conditions obtained from the closed-form steady state solution

(c) apply approximate stochastic boundary conditions, ignoring correlation effects

(d) apply approximate stochastic boundary conditions, accounting for the correlation between the boundaries

Model (a) completely ignores boundary condition uncertainty. Since a closed-form solution exists for this par-

ticular problem if the viscosity is modeled by a single random variable, we can get a fairly accurate modeling of

the boundary condition uncertainty. For Model (b), we applied the exact PDF obtained for the boundary conditions

u(�xmax) andu(xmax) to the random field model. This Model (b) still represents an approximation in the sense that

the random field uncertainties are all lumped together on the boundary.

In many practical cases we may only have second moment information about the boundary condition uncertainty

(i.e., mean value and variance). It then makes sense to add a random perturbation to the deterministic boundary

conditions at�xmax. This is done in Models (c) and (d). Since0� u(x)� 1, a Gaussian perturbation at the boundary

can physically not be justified. Since only very scant information may be available regarding the uncertainty at the

boundary conditions, we used the following basic perturbation model, based on the deterministic boundary conditions

Eq.(10.2): (
u(�xmax) = 0+ �1

u(xmax) = 1� �2
(11.1)

where�i are exponentially distributed random variables, with variance equal to the variance of the PDF in Model (b).

Model (c) ignores the correlation effects between�1 and�2; while these are taken into consideration in Model (d). The

correlated exponentially distributed random variables are generated using the Nataf transformation [8]. Figure 11.2

compares the approximate exponential marginal PDF foru(�xmax) used in Models (c) and (d) with the PDF used in

Model (b).

Figure 11.3 shows that, when the uncertainty on the boundary conditions is included, the difference between

the deterministic and the mean stochastic solution is three times larger than when the uncertainty on the boundary

conditions is not included (see Figure 10.1). For practical purposes, this difference remains small though (lc = 1).
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FIG. 11.1.Comparison ofStDev[u(x)] using different boundary condition models and 8193 grid points.

Note that the mean random variable solution is an exact result, whereas the mean random field solution is the results

of 106 Monte Carlo simulations. The standard error on the Monte Carlo results is less than 0.00006.

Regarding the standard deviation ofu(x), the following conclusions can be drawn from the analysis (see Figures

11.1 and 11.4):

� Ignoring the uncertainty of the boundary conditions grossly underestimates the variability in the interior

domain when the correlation lengthlc is substantially shorter than the integration domain. Note that this will

usually be the case; otherwise there is no reason to use a random field model.

� The importance of an accurate estimation of the correlation between random variables is clear from a com-

parison of Models (c) and (d). If the correlation length is long and substantial correlation is present between

�1 and�2, Models (c) and (d) give drastically different results.

� Even though the exponential PDF is a crude approximation of the boundary uncertainty (see Figure 11.2), the

variance of Model (d) follows the trends of Model (b) remarkably well for alllc-values.
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12. Summary. The paper describes and highlights the need for more advanced uncertainty modeling. The dif-

ferent sources of uncertainty and their treatment are reviewed. The steady-state generalized Burgers equation (GBE) is

solved using a variety of stochastic models. First a random variable model is used. The differential equation is solved

deterministically and the inherent uncertainty associated with the viscosity is propagated through the closed-form so-

lution. The exact solutions for the mean and standard deviation are compared with Monte Carlo simulations as well as

with first- and second-order approximate results. The second-order results are found to be significantly more accurate.

Subsequently, the differential equation is solved stochastically using a random field description for the viscosity.

The viscosity generally depends on the temperature distribution for which no information is available in the GBE.

The random field emulates the model uncertainty caused by these missing variables. We computed results using both

midpoint and locally averaged discretizations. It is shown how, for a given discretization level, both methods bracket

the true variability. They provide practical upper and lower bounds to the variability. The impact of the auto-correlation

model is studied as well.

The use of a random field model for the viscosity instead of a single random variable transforms the Burgers
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FIG. 11.4.Impact of boundary condition uncertainty onStDev[u(x)] for different correlation lengthslc.

equation into a stochastic differential equation. The presented results clearly reveal the random field effect: Var[u(0)]

depends on both the correlation lengthlc and the auto-correlation modelR(�). It is intuitively clear that a zero variance

atx = 0, as obtained from the random variable model, is unrealistic. The uncertainty caused by the missing variable

– temperature – can be modeled realistically using a random field description of the viscosity.

In the last section, the effects of boundary condition uncertainty are studied. This uncertainty is caused by the

truncation of the integration domain at the far field boundary during the numerical solution phase of the differential

equations. In practice only limited information will be available regarding this type of model uncertainty. Therefore

we compared various approximate models. It can be concluded that ignoring this boundary condition uncertainty

dramatically underestimates the variance of the velocityu(x) in the interior of the domain.
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